Summary
Scikit-learn is an open source data analysis library, and the gold standard for Machine Learning (ML) in the Python ecosystem. Algorithmic decision-making methods, including:Classification,Regression, and Clustering.
Body
For more information on Scikit check out (https://scikit-learn.org/)
First start your Jupyter server using the short process:
- Open https://ondemand.hpc.fau.edu
- Login
- Click Interactive Apps -> Jupyter Notebook
- Enter the requirements for your job
- Click “Launch”
- Wait for allocation to a node, once available click "Connect to Jupyter"
- Create a new notebook by clicking: New -> Python 3 or open an existing notebook
- Enter "pip install --user -U scikit-learn “
- You may wish to update your pip if you wish. This is not required.
- Enter “pip install upgrade --user pip”
- Enter "pip install --user matplotlib"
- Wait for this to complete.
Running Scikit-learn code:
- Click “New”
- Click "Python 3”
- Enter the following demo code from (https://scikit-learn.org/stable/auto_examples/plot_isotonic_regression.html#sphx-glr-auto-examples-plot-isotonic-regression-py)
print(__doc__)
# Author: Nelle Varoquaux <nelle.varoquaux@gmail.com>
# Alexandre Gramfort <alexandre.gramfort@inria.fr>
# License: BSD
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from sklearn.linear_model import LinearRegression
from sklearn.isotonic import IsotonicRegression
from sklearn.utils import check_random_state
n = 100
x = np.arange(n)
rs = check_random_state(0)
y = rs.randint(-50, 50, size=(n,)) + 50. * np.log1p(np.arange(n))
# #############################################################################
# Fit IsotonicRegression and LinearRegression models
ir = IsotonicRegression()
y_ = ir.fit_transform(x, y)
lr = LinearRegression()
lr.fit(x[:, np.newaxis], y) # x needs to be 2d for LinearRegression
# #############################################################################
# Plot result
segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)]
lc = LineCollection(segments, zorder=0)
lc.set_array(np.ones(len(y)))
lc.set_linewidths(np.full(n, 0.5))
fig = plt.figure()
plt.plot(x, y, 'r.', markersize=12)
plt.plot(x, y_, 'g.-', markersize=12)
plt.plot(x, lr.predict(x[:, np.newaxis]), 'b-')
plt.gca().add_collection(lc)
plt.legend(('Data', 'Isotonic Fit', 'Linear Fit'), loc='lower right')
plt.title('Isotonic regression')
plt.show()
- Click Run and you will be presented with the graph confirming Sci-kit is working in Jupyter.